Here are the sizes of drill required to produce the required size for tapping the required thread. For each line the first part is the size of screw followed by the threads per inch or in metric the pitch. For example 440 is a size 4 screw with 40 threads per inch. While M 20.40 is a metric 2 mm with a 0.40 mm pitch, the distances between one peak to the next. Depending on what kind of material being tapped the size of hole will vary. When taping by hand use $\mathbf{9 0 \%}$ to 50% and when using power tools use $\mathbf{8 0 \%}$ through $\mathbf{5 0 \%}$. The most common used size drill is 75%. For sheet brass, sheet nickel, babbitt, white metal, hard rubber use $\mathbf{7 5 \%}$ to $\mathbf{8 0 \%}$. For mild steel, aluminum, cast iron, and cast brass use $\mathbf{7 0 \%}$ to $\mathbf{7 5 \%}$. For bronze, tool steel, drop forging, stainless steel, cast steel, nickel, and copper use 65% to 70%. This table list the actual size of drill wanted there may not be an exact match use the next large drill you can purchase.

		ize	diam.	100\%	95\%	90\%	85\%	80\%	75\%	70\%	65\%	60\%	55\%	50\%
	00	90	. 0470	. 0326	. 0333	0340	. 0347	. 0355	. 0362	0369	0376	0383	. 0391	. 0398
	0	80	. 0600	. 0438	. 0446	. 0454	. 0462	0470	0478	. 0486	0494	0503	0511	0519
	1	72	. 0730	. 0550	. 0559	. 0568	. 0577	0586	0595	0604	0613	0622	0631	0640
	2	64	. 0860	. 0657	. 0667	. 0677	. 0687	. 0698	. 0708	. 0718	. 0728	. 0738	0748	0759
	3	56	. 0990	. 0758	. 0770	. 0781	. 0793	. 0804	. 0816	. 0828	. 0839	. 0851	. 0862	. 0874
	4	40	. 1120	. 0795	. 0811	. 0828	. 0844	. 0860	0876	0893	0909	0925	0941	0958
	6	32	. 1380	. 0974	. 0994	1015	. 1035	1055	1076	1096	1116	1136	1157	177
	8	32	. 1640	. 1234	. 1254	1	1295	1	1336	1356	1376	1396	417	37
	10	24	. 1900	. 1359	. 1386	. 1413	. 1440	1467	1494	1521	1548	1575	1602	629
	10	32	. 1900	. 1494	. 1514	. 1535	. 1555	. 1575	. 1596	. 1616	. 1636	. 1656	1677	1697
	12	24	. 2160	. 1619	. 1646	. 1673	. 1700	1727	. 1754	1781	1808	1835	1862	1889
	12	28	. 2160	. 1696	. 1719		. 1766	1789	1812	1835	1858	1882	1905	1928
		20	. 2500	. 1850	. 1883	1	. 1948	. 1980	. 2013	. 2045	2078	2110	2143	5
	$1 /$	28	. 2500	. 2036	. 2059	. 2082	. 2106	2129	2152	. 2175	. 2198	. 2222	. 2245	2268
	5/16	18	. 3125	. 2403	. 2439	2475	2512	2548	2584	2620	2656	2692	2728	2764
	5/16	24	. 3125	. 2584	. 2611	. 2638	2665	2692	2719	2746	2773	2800	2827	2854
		16	. 3750	. 2938	. 2979	. 3019	. 3060	. 3100	. 3141	3182	3222	3263	3303	3344
	3/ 8	24	. 3750	. 3209	. 3236	. 3263	. 3290	3317	3344	3371	3398	. 3425	3452	3479
	7/16	14	4375	. 3447	. 3494	3540	3586	3633	3679	3725	3772	3818	3865	911
	7/16	20	. 4375	. 3725	. 3758	90	3823	3855	3888	3920	3953	3985	4018	50
	1/ 2	13	. 5000	. 4001	. 4051	. 4101	. 4151	. 4201	. 4251	. 4301	. 4350	4400	4450	4500
	1/2	20	. 5000	. 4350	. 4383	. 4415	. 4448	. 4480	. 4513	. 4545	4578	. 4610	4643	4675
	/ 8	11	. 6250	5069	. 5128	5187	. 5246	5305	5364	5423	5482	5541	5600	660
	/ 8	18	. 6	. 5	. 5	. 5600	. 5637	. 5673	5709	5	5781	5817	5853	5889
M	2	0.40	. 0787	. 0583	. 0593	. 0603	. 0614	. 0624	. 0634	. 0644	. 0654	. 0665	75	685
M	2	0.25	. 0787	. 0660	. 0666	. 0672	. 0679	0685	0692	. 0698	. 0704	. 0711	. 0717	0723
M	3	0.50	. 1181	. 092	. 0938	. 0951	. 0964	097	0989	1002	1015	1028	1040	053
M	3	0.35	. 1181	. 1002	. 1011	. 1020	. 1029	. 1038	. 1047	. 1056	1065	1074	1083	1092
M	4	0.70	. 1575	. 1217	. 1235	. 1253	. 1271	. 1288	. 1306	. 1324	. 1342	. 1360	1378	1396
M	4	0.50	. 1575	. 1319	. 1332	. 1345	. 1357	. 1370	. 1383	. 1396	. 1409	. 1421	1434	1447
M	5	0.80	. 1969	. 1559	. 1580	. 1600	. 1621	1641	1662	1682	1703	1723	1743	1764
M	5	0.50	. 1969	. 1713	. 1726	. 1738	. 1751	. 1764	. 1777	1790	1802	1815	1828	1841
M	6	1.00	. 2362	. 1851	. 1876	. 1902	. 1927	. 1953	. 1979	. 2004	. 2030	. 2055	. 2081	. 2106
M	6	0.75	. 2362	. 1979	. 1998	. 2017	. 2036	. 2055	. 2075	. 2094	. 2113	. 2132	2151	2170
M	7	1.00	. 2756	. 2244	. 2270	. 2296	. 2321	. 2347	. 2372	. 2398	. 2423	. 2449	. 2475	2500
M	7	0.75	. 275	. 237	. 239	. 2411	. 2430	. 2449	2468	2487	2507	2526	2545	2564
M	8	1.25	. 3150	. 2510	. 2542	. 2574	. 2606	. 2638	. 2670	. 2702	. 2734	. 2766	. 2798	. 2830
M	8	1.00	. 3150	. 2638	. 2664	. 2689	. 2715	. 2740	. 2766	. 2792	. 2817	. 2843	. 2868	. 2894
M	8	0.75	. 3150	. 2766	. 2785	. 2804	. 2824	. 2843	. 2862	. 2881	. 2900	. 2919	. 2939	. 2958
M	10	1.50	. 3937	. 3170	. 3208	3247	. 3285	3323	3362	3400	3438	3477	3515	3553
M	10	1.25	. 3937	. 329	. 3330	. 3362	. 339	. 3426	. 3458	. 3490	3521	3553	3585	3617
M	10	1.00	. 3937	. 3426	. 3451	. 3477	. 3502	. 3528	. 3553	. 3579	. 3605	. 3630	. 3656	. 3681
M	10	0.75	. 3937	. 3553	. 3573	. 3592	. 3611	. 3630	. 3649	. 3669	. 3688	. 3707	. 3726	. 3745
M	12	1.75	. 4724	. 3829	. 3874	. 3919	. 3964	. 4008	. 4053	. 4098	. 4143	. 4187	. 4232	. 4277
M	12	1.50	. 4724	. 3957	. 3996	. 4034	. 4072	. 4111	. 4149	. 4187	. 4226	. 4264	. 4302	. 4341
M	12	1.25	. 4724	. 4085	. 4117	. 4149	. 4181	. 4213	. 4245	. 4277	. 4309	4341	4373	4405
M	12	1.00	4724	4213	4239	4264	. 4290	4315	4341	4366	4392	4418	4443	69

Here are the sizes of drill required to produce the required size for tapping the required thread. For each line the first part is the size of screw followed by the threads per inch or in metric the pitch. For example 440 is a size 4 screw with 40 threads per inch. While M 20.40 is a metric 2 mm with a 0.40 mm pitch, the distances between one peak to the next. Depending on what kind of material being tapped the size of hole will vary. When taping by hand use $\mathbf{9 0 \%}$ to 50% and when using power tools use $\mathbf{8 0 \%}$ through $\mathbf{5 0 \%}$. The most common used size drill is 75%. For sheet brass, sheet nickel, babbitt, white metal, hard rubber use $\mathbf{7 5 \%}$ to $\mathbf{8 0 \%}$. For mild steel, aluminum, cast iron, and cast brass use $\mathbf{7 0 \%}$ to $\mathbf{7 5 \%}$. For bronze, tool steel, drop forging, stainless steel, cast steel, nickel, and copper use 65% to 70%. This table lists the next available American drill except for the letter drills use the next larger size.

Here are the sizes of drill required to produce the required size for tapping the required thread. For each line the first part is the size of screw followed by the threads per inch or in metric the pitch. For example 440 is a size 4 screw with 40 threads per inch. While M 20.40 is a metric 2 mm with a 0.40 mm pitch, the distances between one peak to the next. Depending on what kind of material being tapped the size of hole will vary. When taping by hand use 90% to 50% and when using power tools use $\mathbf{8 0 \%}$ through $\mathbf{5 0 \%}$. The most common used size drill is $\mathbf{7 5 \%}$. For sheet brass, sheet nickel, babbitt, white metal, hard rubber use 75% to 80%. For mild steel, aluminum, cast iron, and cast brass use 70% to $\mathbf{7 5 \%}$. For bronze, tool steel, drop forging, stainless steel, cast steel, nickel, and copper use 65% to $\mathbf{7 0 \%}$. This table lists the next available American drill except for the letter drills use the next larger size.

Here are the sizes of drill required to produce the required size for tapping the required thread. For each line the first part is the size of screw followed by the threads per inch or in metric the pitch. For example 440 is a size 4 screw with 40 threads per inch. While M 20.40 is a metric 2 mm with a 0.40 mm pitch, the distances between one peak to the next. Depending on what kind of material being tapped the size of hole will vary. When taping by hand use $\mathbf{9 0 \%}$ to 50% and when using power tools use $\mathbf{8 0 \%}$ through $\mathbf{5 0 \%}$. The most common used size drill is 75%. For sheet brass, sheet nickel, babbitt, white metal, hard rubber use $\mathbf{7 5 \%}$ to $\mathbf{8 0 \%}$. For mild steel, aluminum, cast iron, and cast brass use $\mathbf{7 0 \%}$ to $\mathbf{7 5 \%}$. For bronze, tool steel, drop forging, stainless steel, cast steel, nickel, and copper use 65% to 70%. This table lists the next available American drill except for the letter drills use the next larger size. The percent values after the drill size are the correct values for that drill.

Here are the sizes of drill required to produce the required size for tapping the required thread. For each line the first part is the size of screw followed by the threads per inch or in metric the pitch. For example 440 is a size 4 screw with 40 threads per inch. While M 20.40 is a metric 2 mm with a 0.40 mm pitch, the distances between one peak to the next. Depending on what kind of material being tapped the size of hole will vary. When taping by hand use $\mathbf{9 0 \%}$ to 50% and when using power tools use $\mathbf{8 0 \%}$ through 50%. The most common used size drill is 75%. For sheet brass, sheet nickel, babbitt, white metal, hard rubber use $\mathbf{7 5 \%}$ to $\mathbf{8 0 \%}$. For mild steel, aluminum, cast iron, and cast brass use $\mathbf{7 0 \%}$ to $\mathbf{7 5 \%}$. For bronze, tool steel, drop forging, stainless steel, cast steel, nickel, and copper use 65% to 70%. This table lists the next available American drill except for the letter drills use the next larger size. The percent values after the drill size are the correct values for that drill.

	Size		diam.	75\%		70\%		65\%		60\%		55\%		50\%	
	00	- 90	. 0470	\# 64	76\%	\#63	69\%	\#62	62\%	\# 61	55\%	\#61	55\%	\# 60	48\%
	0	80	. 0600	\#55	49\%	\#55	49\%	\#55	49\%	\#55	49\%	\#55	49\%	\#55	49\%
	1	72	. 0730	\#53	75\%	1/16	58\%	1/16	58\%	1/16	58\%	\#52	53\%	\#51	33\%
	2	64	. 0860	\#49	64\%	\#49	64\%	\#49	64\%	\#48	49\%	\#48	49\%	\#48	49\%
	3	56	. 0990	\#45	73\%	\#44	56\%	\#44	56\%	\#44	56\%	\#44	56\%	\#43	43\%
	4	40	. 1120	\#43	71\%	\#43	71\%	\#42	57\%	\# 42	57\%	3/32	56\%	\#41	49\%
	6	632	. 1380	7/64	70\%	7/64	70\%	\#34	67\%	\#33	62\%	\#32	54\%	\#31	44\%
	8	32	. 1640	\#29	69\%	\#29	69\%	\#28	58\%	\#28	58\%	\#27	49\%	\#27	49\%
	10	24	. 1900	\#25	75\%	\#24	70\%	\#23	67\%	\#22	61\%	\#20	54\%	\#19	44\%
	10	32	. 1900	\#21	76\%	\#20	71\%	\#19	59\%	\#19	59\%	\#18	50\%	\#18	50\%
	12	24	. 2160	\#16	72\%	\#15	67\%	\#15	67\%	\#13	57\%	3/16	53\%	\#12	50\%
	12	28	. 2160	\#14	73\%	\#13	67\%	\#13	67\%	3/16	61\%	\#11	54\%	\#10	48\%
	$1 / 4$	20	. 2500	\# 7	75\%	\# 6	71\%	\# 4	63\%	\# 3	57\%	7/32	48\%	7/32	48\%
	/ 4	28	. 2500	7/32	67\%	7/32	67\%	7/32	67\%	\# 2	63\%	\# 1	47\%	\# 1	47\%
	/16	18	. 3125	F	77\%	G	71\%	17/64	65\%	I	56\%	I	56\%	J	49\%
	/16	24	. 3125	I	75\%	J	66\%	J	66\%	K	58\%	9/32	58\%	L	42\%
	/ 8	16	. 3750	5/16	77\%	P	64\%	P	64\%	21/64	58\%	Q	53\%	R	44\%
	/ 8	24	. 3750	R	67\%	R	67\%	R	67\%	11/32	58\%	11/32	58\%	S	50\%
	/16	14	. 4375	U	75\%	3/ 8	67\%	V	65\%	W	56\%	W	56\%	25/64	51\%
	/16	- 20	. 4375	25/64	72\%	25/64	72\%	x	62\%	x	62\%	Y	52\%	Y	52\%
	/ 2	13	. 5000	7/16	63\%	7/16	63\%	7/16	63\%	29/64	47\%	29/64	47\%	29/64	47\%
	/ 2	20	. 5000	29/64	72\%	29/64	72\%	15/32	48\%	15/32	48\%	15/32	48\%	15/32	48\%
	/ 8	11	. 6250	35/64	66\%	35/64	66\%	35/64	66\%	18/32	53\%	18/32	53\%	37/64	40\%
	/ 8	18	. 6250	37/64	65\%	37/64	65\%	37/64	65\%	19/32	43\%	19/32	43\%	19/32	43\%
M	2	0.40	. 0787	\#52	74\%	\#51	57\%	\#51	57\%	\#51	57\%	\#50	43\%	\#50	43\%
M	2	0.25	. 0787	\#50	68\%	\#50	68\%	\#49	45\%	\#49	45\%	\#49	45\%	\#49	45\%
M	3	0.50	. 1181	\#39	73\%	\#38	65\%	\#38	65\%	\#37	55\%	\#37	55\%	\#36	45\%
M	3	0.35	. 1181	\#36	65\%	\#36	65\%	\#36	65\%	7/64	49\%	7/64	49\%	7/64	49\%
M	4	0.70	. 1575	\#29	60\%	\#29	60\%	\#29	60\%	\#29	60\%	\#28	47\%	\#28	47\%
M	4	0.50	. 1575	\#28	66\%	\#28	66\%	\#28	66\%	\#27	53\%	\#27	53\%	\#27	53\%
M	5	0.80	. 1969	\#19	75\%	\#18	67\%	\#18	67\%	11/64	61\%	\#16	49\%	\#16	49\%
M	5	0.50	. 1969	\#16	78\%	\#15	66\%	\#15	66\%	\#14	58\%	\#14	58\%	\#13	46\%
M	6	1.00	. 2362	\# 8	73\%	\# 7	69\%	13/64	65\%	\# 5	60\%	\# 4	53\%	\# 3	45\%
M	6	0.75	. 2362	\# 4	71\%	\# 4	71\%	\# 3	61\%	\# 3	61\%	7/32	45\%	7/32	45\%
M	7	1.00	. 2756	B	74\%	C	66\%	C	66\%	D	58\%	1/4	50\%	1/ 4	50\%
M	7	0.75	. 2756	D	77\%	1/ 4	67\%	1/ 4	67\%	F	48\%	F	48\%	F	48\%
M	8	1.25	. 3150	17/64	77\%	I	67\%	I	67\%	J	59\%	K	53\%	L	39\%
M	8	1.00	. 3150	J	74\%	K	66\%	K	66\%	L	49\%	L	49\%	L	49\%
M	8	0.75	. 3150	L	65\%	L	65\%	L	65\%	M	52\%	M	52\%	M	52\%
M	10	1.50	. 3937	R	71\%	R	71\%	11/32	65\%	S	60\%	T	47\%	T	47\%
M	10	1.25	. 3937	11/32	78\%	S	71\%	T	56\%	T	56\%	T	56\%	U	40\%
M	10	1.00	. 3937	T	70\%	T	70\%	23/64	67\%	U	50\%	U	50\%	U	50\%
M	10	0.75	. 3937	U	67\%	U	67\%	U	67\%	3/8	49\%	3/8	49\%	3/8	49\%
M	12	1.75	. 4724	Y	76\%	Z	66\%	Z	66\%	27/64	56\%	27/64	56\%	7/16	39\%
M	12	1.50	. 4724	z	77\%	27/64	66\%	27/64	66\%	7/16	46\%	7/16	46\%	7/16	46\%
M	12	1.25	. 4724	7/16	55\%	7/16	55\%	7/16	55\%	7/16	55\%	7/16	55\%	29/64	30\%
M	12	1.00	. 4724	7/16	68\%	7/16	68\%	7/16	68\%	29/64	38\%	29/64	38\%	29/64	38\%

Here are the sizes of drill required to produce the required size for tapping the required thread. For each line the first part is the size of screw followed by the threads per inch or in metric the pitch. For example 440 is a size 4 screw with 40 threads per inch. While M 20.40 is a metric 2 mm with a 0.40 mm pitch, the distances between one peak to the next. Depending on what kind of material being tapped the size of hole will vary. When taping by hand use 90% to 50% and when using power tools use $\mathbf{8 0 \%}$ through $\mathbf{5 0 \%}$. The most common used size drill is group 2. For sheet brass, sheet nickel, babbitt, white metal, hard rubber use group 1. For mild steel, aluminum, cast iron, and cast brass use group 2. For bronze, tool steel, drop forging, stainless steel, cast steel, nickel, and copper use group 3. This table lists the next available American drill except for the letter drills use the next larger size. Pick the group best suited for you work pick either drill listed. Metric drills have been add as they will become more available.

Size			diam.		group		group 2		$\text { group } 3$			
			-									
								----\				-
	00	90	. 0470	\# 64	0.9 mm	\# 64	0.9 mm	\#63	0.9 mm	\# 62	1.0 mm	
	0	80	. 0600	\#55	1.2 mm	\#55	1.2 mm	\#55	1.2 mm	\#55	1.3 mm	
	1	72	. 0730	\#53	1.5 mm	\#53	1.5 mm	1/16	1.5 mm	1/16	1.6 mm	
	2	64	. 0860	\#50	1.8 mm	\#49	1.8 mm	\#49	1.8 mm	\#49	1.8 mm	
	3	56	. 0990	\#46	2.0 mm	\#45	2.1 mm	\#44	2.1 mm	\#44	2.1 mm	
	4	40	. 1120	\#44	2.2 mm	\#43	2.2 mm	\#43	2.3 mm	\# 42	2.3 mm	
	6	32	. 1380	\#36	2.7 mm	7/64	2.7 mm	7/64	2.8 mm	\#34	2.8 mm	
	8	32	. 1640	\#29	3.3 mm	\#29	3.4 mm	\#29	3.4 mm	\#28	3.5 mm	
	10	24	. 1900	\#26	3.7 mm	\#25	3.8 mm	\#24	3.9 mm	\#23	3.9 mm	
	10	32	. 1900	\#22	4.0 mm	\#21	4.1 mm	\#20	4.1 mm	\#19	4.2 mm	
	12	24	. 2160	11/64	4.4 mm	\#16	4.5 mm	\#15	4.5 mm	\#15	4.6 mm	
	12	28	. 2160	\#15	4.5 mm	\#14	4.6 mm	\#13	4.7 mm	\#13	4.7 mm	
	$1 / 4$	20	. 2500	\# 8	5.0 mm	\# 7	5.1 mm	\# 6	5.2 mm	\# 4	5.3 mm	
	$1 / 4$	28	. 2500	\# 3	5.4 mm	7/32	5.5 mm	7/32	5.5 mm	7/32	5.6 mm	
	/16	18	. 3125	F	6.5 mm	F	6.6 mm	G	6.7 mm	17/64	6.7 mm	
	/16	24	. 3125	I	6.8 mm	I	6.9 mm	J	7.0 mm	J	7.0 mm	
	$3 / 8$	16	. 3750	5/16	7.9 mm	5/16	8.0 mm	P	8.1 mm	P	8.2 mm	
	/ 8	24	. 3750	Q	8.4 mm	R	8.5 mm	R	8.6 mm	R	8.6 mm	
	/16	14	. 4375	U	9.2 mm	U	9.3 mm	3/ 8	9.5 mm	V	9.6 mm	
	7/16	20	. 4375	W	9.8 mm	25/64	9.9 mm	25/64	10.0 mm	x	10.0 mm	
	/ 2	13	. 5000	27/64	10.7 mm	7/16	10.8 mm	7/16	10.9 mm	7/16	11.1 mm	
	/ 2	20	. 5000	29/64	11.4 mm	29/64	11.5 mm	29/64	11.5 mm	15/32	11.6 mm	
	/ 8	11	. 6250	17/32	13.5 mm	35/64	13.6 mm	35/64	13.8 mm	35/64	13.9 mm	
	/ 8	18	. 6250	37/64	14.4 mm	37/64	14.5 mm	37/64	14.6 mm	37/64	14.7 mm	
M	2	0.40	. 0787	1/16	1.6 mm	\#52	1.6 mm	\#51	1.6 mm	\#51	1.7 mm	
M	2	0.25	. 0787	\#50	1.7 mm	\#50	1.8 mm	\#50	1.8 mm	\#49	1.8 mm	
M	3	0.50	. 1181	\#40	2.5 mm	\#39	2.5 mm	\#38	2.5 mm	\#38	2.6 mm	
M	3	0.35	. 1181	\#37	2.6 mm	\#36	2.7 mm	\#36	2.7 mm	\#36	2.7 mm	
M	4	0.70	. 1575	\#30	3.3 mm	\#29	3.3 mm	\#29	3.4 mm	\#29	3.4 mm	
M	4	0.50	. 1575	\#28	3.5 mm	\#28	3.5 mm	\#28	3.5 mm	\#28	3.6 mm	
M	5	0.80	. 1969	\#19	4.2 mm	\#19	4.2 mm	\#18	4.3 mm	\#18	4.3 mm	
M	5	0.50	. 1969	\#16	4.5 mm	\#16	4.5 mm	\#15	4.5 mm	\#15	4.6 mm	
M	6	1.00	. 2362	\# 9	5.0 mm	\# 8	5.0 mm	\# 7	5.1 mm	13/64	5.2 mm	
M	6	0.75	. 2362	\# 5	5.2 mm	\# 4	5.3 mm	\# 4	5.3 mm	\# 3	5.4 mm	
M	7	1.00	. 2756	A	6.0 mm	B	6.0 mm	C	6.1 mm	C	6.2 mm	
M	7	0.75	. 2756	D	6.2 mm	D	6.3 mm	1/4	6.3 mm	1/ 4	6.4 mm	
M	8	1.25	. 3150	17/64	6.7 mm	17/64	6.8 mm	I	6.9 mm	I	6.9 mm	
M	8	1.00	. 3150	J	7.0 mm	J	7.0 mm	K	7.1 mm	K	7.2 mm	
M	8	0.75	. 3150	L	7.2 mm	L	7.3 mm	L	7.3 mm	L	7.4 mm	
M	10	1.50	. 3937	Q	8.4 mm	R	8.5 mm	R	8.6 mm	11/32	8.7 mm	
M	10	1.25	. 3937	11/32	8.7 mm	11/32	8.8 mm	S	8.9 mm	T	8.9 mm	
M	10	1.00	. 3937	T	9.0 mm	T	9.0 mm	T	9.1 mm	23/64	9.2 mm	
M	10	0.75	. 3937	U	9.2 mm	U	9.3 mm	U	9.3 mm	U	9.4 mm	
M	12	1.75	. 4724	Y	10.2 mm	Y	10.3 mm	Z	10.4 mm	Z	10.5 mm	
M	12	1.50	. 4724	z	10.4 mm	Z	10.5 mm	27/64	10.6 mm	27/64	10.7 mm	
M	12	1.25	. 4724	27/64	10.7 mm	7/16	10.8 mm	7/16	10.9 mm	7/16	10.9 mm	
M	12	1.00	. 4724	7/16	11.0 mm	7/16	11.0 mm	7/16	11.1 mm	7/16	11.2 mm	

Here are the sizes of drill required to produce the required size for tapping the required thread. For each line the first part is the size of screw followed by the threads per inch or in metric the pitch. For example 440 is a size 4 screw with 40 threads per inch. While M 20.40 is a metric 2 mm with a 0.40 mm pitch, the distances between one peak to the next. Depending on what kind of material being tapped the size of hole will vary. When taping by hand use $\mathbf{9 0 \%}$ to 50% and when using power tools use $\mathbf{8 0 \%}$ through $\mathbf{5 0 \%}$. The most common used size drill is group 2. For sheet brass, sheet nickel, babbitt, white metal, hard rubber use group 1. For mild steel, aluminum, cast iron, and cast brass use group 2. For bronze, tool steel, drop forging, stainless steel, cast steel, nickel, and copper use group 3. This table lists the next available American drill except for the letter drills use the next larger size. Pick the group best suited for you work pick either drill listed. Metric drills have been add as they will become more available. The percent values after the drill size are the correct values for that drill.

Size	diam			80\%			75\%			70\%			65\%	
00	- 90	. 0470	\#64	0.0005	76\%	\# 64	-. 0002	76\%	\#63	0.0001	69\%	\# 62	0.0004	62\%
0	- 80	. 0600	\#55	0.0050	49\%	\#55	0.0042	49\%	\#55	0.0034	49\%	\#55	0.0026	49\%
1	72	. 0730	\#53	0.0009	75\%	\#53	0.0000	75\%	1/16	0.0021	58\%	1/16	0.0012	58\%
2	264	. 0860	\#50	0.0002	79\%	\#49	0.0022	64\%	\# 49	0.0012	64\%	\#49	0.0002	64\%
3	356	. 0990	\#46	0.0006	78\%	\#45	0.0004	73\%	\#44	0.0032	56\%	\#44	0.0021	56\%
4	40	. 1120	\#44	-. 0000	80\%	\#43	0.0014	71\%	\#43	-. 0003	71\%	\#42	0.0026	57\%
6	632	. 1380	\#36	0.0010	78\%	7/64	0.0018	70\%	7/64	-. 0002	70\%	\#34	-. 0006	67\%
8	832	. 1640	\#29	0.0045	69\%	\#29	0.0024	69\%	\#29	0.0004	69\%	\#28	0.0029	58\%
10	- 24	. 1900	\#26	0.0003	79\%	\#25	0.0001	75\%	\#24	-. 0001	70\%	\#23	-. 0008	67\%
10	- 32	. 1900	\#22	-. 0005	81\%	\#21	-. 0006	76\%	\#20	-. 0006	71\%	\#19	0.0024	59\%
12	24	. 2160	11/64	-. 0008	81\%	\#16	0.0016	72\%	\#15	0.0019	67\%	\#15	-. 0008	67\%
12	28	. 2160	\#15	0.0011	78\%	\#14	0.0008	73\%	\#13	0.0015	67\%	\#13	-. 0008	67\%
1/ 4	20	. 2500	\# 8	0.0010	79\%	\# 7	-. 0003	75\%	\# 6	-. 0005	71\%	\# 4	0.0012	63\%
1/4	48	. 2500	\# 3	0.0001	80\%	7/32	0.0036	67\%	7/32	0.0013	67\%	7/32	-. 0010	67\%
5/16	18	. 3125	F	0.0022	77\%	F	-. 0014	77\%	G	-. 0010	71\%	17/64	0.0000	65\%
5/16	- 24	. 3125	I	0.0028	75\%	I	0.0001	75\%	J	0.0024	66\%	J	-. 0003	66\%
3/ 8	816	. 3750	5/16	0.0025	77\%	5/16	-. 0016	77\%	P	0.0048	64\%	P	0.0008	64\%
3/8	34	. 3750	Q	0.0003	79\%	R	0.0046	67\%	R	0.0019	67\%	R	-. 0008	67\%
7/16	14	. 4375	U	0.0047	75\%	U	0.0001	75\%	3/8	0.0025	67\%	V	-. 0002	65\%
7/16	620	. 4375	W	0.0005	79\%	25/64	0.0018	72\%	25/64	-. 0014	72\%	x	0.0017	62\%
1/2	13	. 5000	27/64	0.0018	78\%	7/16	0.0124	63\%	7/16	0.0074	63\%	7/16	0.0025	63\%
1/2	20	. 5000	29/64	0.0051	72\%	29/64	0.0018	72\%	29/64	-. 0014	72\%	15/32	0.0110	48\%
5/ 8	811	. 6250	17/32	0.0008	79\%	35/64	0.0105	66\%	35/64	0.0046	66\%	35/64	-. 0013	66\%
5/ 8	818	. 6250	37/64	0.0108	65\%	37/64	0.0072	65\%	37/64	0.0036	65\%	37/64	0.0000	65\%
M 2	0.40	. 0787	1/16	0.0001	79\%	\#52	0.0001	74\%	\#51	0.0026	57\%	\#51	0.0016	57\%
M 2	0.25	. 0787	\#50	0.0015	68\%	\#50	0.0008	68\%	\#50	0.0002	68\%	\#49	0.0026	45\%
M 3	0.50	. 1181	\#40	0.0003	79\%	\#39	0.0006	73\%	\#38	0.0013	65\%	\#38	0.0000	65\%
M 3	0.35	. 1181	\#37	0.0002	79\%	\#36	0.0018	65\%	\#36	0.0009	65\%	\#36	0.0000	65\%
M 4	0.70	. 1575	\#30	-. 0003	81\%	\#29	0.0054	60\%	\#29	0.0036	60\%	\#29	0.0018	60\%
M 4	0.50	. 1575	\#28	0.0035	66\%	\#28	0.0022	66\%	\#28	0.0009	66\%	\#28	-. 0004	66\%
M 5	0.80	. 1969	\#19	0.0019	75\%	\#19	-. 0002	75\%	\#18	0.0013	67\%	\#18	-. 0008	67\%
M 5	0.50	. 1969	\#16	0.0006	78\%	\#16	-. 0007	78\%	\#15	0.0010	66\%	\#15	-. 0002	66\%
M 6	1.00	. 2362	\# 9	0.0007	79\%	\# 8	0.0011	73\%	\# 7	0.0006	69\%	13/64	0.0001	65\%
M 6	0.75	. 2362	\# 5	-. 0000	80\%	\# 4	0.0015	71\%	\# 4	-. 0004	71\%	\# 3	0.0017	61\%
M 7	1.00	. 2756	A	-. 0007	81\%	B	0.0008	74\%	C	0.0022	66\%	C	-. 0003	66\%
M 7	0.75	. 2756	D	0.0011	77\%	D	-. 0008	77\%	1/ 4	0.0013	67\%	1/ 4	-. 0007	67\%
M 8	1.25	. 3150	17/64	0.0018	77\%	17/64	-. 0014	77\%	I	0.0018	67\%	I	-. 0014	67\%
M 8	1.00	. 3150	J	0.0030	74\%	J	0.0004	74\%	K	0.0018	66\%	K	-. 0007	66\%
M 8	0.75	. 3150	L	0.0057	65\%	L	0.0038	65\%	L	0.0019	65\%	L	-. 0000	65\%
M 10	1.50	. 3937	Q	-. 00003	80\%	R	0.0028	71\%	R	-. 0010	71\%	11/32	-. 0000	65\%
M 10	1.25	. 3937	11/32	0.0012	78\%	11/32	-. 0020	78\%	S	-. 0010	71\%	T	0.0059	56\%
M 10	1.00	. 3937	T	0.0052	70\%	T	0.0027	70\%	T	0.0001	70\%	23/64	-. 0011	67\%
M 10	0.75	. 3937	U	0.0050	67\%	U	0.0031	67\%	U	0.0011	67\%	U	-. 0008	67\%
M 12	1.75	. 4724	Y	0.0032	76\%	Y	-. 0013	76\%	Z	0.0032	66\%	Z	-. 0013	66\%
M 12	1.50	. 4724	Z	0.0019	77\%	Z	-. 0019	77\%	27/64	0.0032	66\%	27/64	-. 0007	66\%
M 12	1.25	. 4724	27/64	0.0006	79\%	7/16	0.0130	55\%	7/16	0.0098	55\%	7/16	0.0066	55\%
M 12	1.00	. 4724	7/16	0.0060	68\%	7/16	0.0034	68\%	7/16	0.0009	68\%	7/16	-. 0017	68\%

Here are the sizes of drill required to produce the required size for tapping the required thread. For each line the first part is the size of screw followed by the threads per inch or in metric the pitch. For example 440 is a size 4 screw with 40 threads per inch. While M 20.40 is a metric 2 mm with a 0.40 mm pitch, the distances between one peak to the next. Depending on what kind of material being tapped the size of hole will vary. When taping by hand use 90% to 50% and when using power tools use $\mathbf{8 0 \%}$ through $\mathbf{5 0 \%}$. The most common used size drill is group 2. For sheet brass, sheet nickel, babbitt, white metal, hard rubber use group 1. For mild steel, aluminum, cast iron, and cast brass use group 2. For bronze, tool steel, drop forging, stainless steel, cast steel, nickel, and copper use group 3. This table lists the next available American drill except for the letter drills use the next larger size. Pick the group best suited for you work pick either drill listed. Metric drills have been add as they will become more available. Note letter drills have been substituted for the next larger fractional drill.

Size			diam.		group		group 2		group 3			
			------					----\				
								----\	/			-
	00	90	. 0470	\# 64	0.9 mm	\# 64	0.9 mm	\#63	0.9 mm	\# 62	1.0 mm	
	0	80	. 0600	\#55	1.2 mm	\#55	1.2 mm	\#55	1.2 mm	\#55	1.3 mm	
	1	72	. 0730	\#53	1.5 mm	\#53	1.5 mm	1/16	1.5 mm	1/16	1.6 mm	
	2	24	. 0860	\#50	1.8 mm	\#49	1.8 mm	\#49	1.8 mm	\#49	1.8 mm	
	3	36	. 0990	\#46	2.0 mm	\#45	2.1 mm	\#44	2.1 mm	\#44	2.1 mm	
	4	40	. 1120	\#44	2.2 mm	\#43	2.2 mm	\#43	2.3 mm	\# 42	2.3 mm	
	6	632	. 1380	\#36	2.7 mm	7/64	2.7 mm	7/64	2.8 mm	\#34	2.8 mm	
	8	32	. 1640	\#29	3.3 mm	\#29	3.4 mm	\#29	3.4 mm	\#28	3.5 mm	
	10	- 24	. 1900	\#26	3.7 mm	\#25	3.8 mm	\#24	3.9 mm	\#23	3.9 mm	
	10	32	. 1900	\#22	4.0 mm	\#21	4.1 mm	\#20	4.1 mm	\#19	4.2 mm	
	12	24	. 2160	11/64	4.4 mm	\#16	4.5 mm	\#15	4.5 mm	\#15	4.6 mm	
	12	28	. 2160	\#15	4.5 mm	\#14	4.6 mm	\#13	4.7 mm	\#13	4.7 mm	
	1/4	20	. 2500	\# 8	5.0 mm	\# 7	5.1 mm	\# 6	5.2 mm	\# 4	5.3 mm	
	1/4	48	. 2500	\# 3	5.4 mm	7/32	5.5 mm	7/32	5.5 mm	7/32	5.6 mm	
	5/16	18	. 3125	17/64	6.5 mm	17/64	6.6 mm	17/64	6.7 mm	17/64	6.7 mm	
	5/16	- 24	. 3125	9/32	6.8 mm	9/32	6.9 mm	9/32	7.0 mm	9/32	7.0 mm	
	$3 / 8$	16	. 3750	5/16	7.9 mm	5/16	8.0 mm	21/64	8.1 mm	21/64	8.2 mm	
	3/8	84	. 3750	11/32	8.4 mm	11/32	8.5 mm	11/32	8.6 mm	11/32	8.6 mm	
	7/16	14	. 4375	3/ 8	9.2 mm	3/ 8	9.3 mm	3/ 8	9.5 mm	25/64	9.6 mm	
	7/16	- 20	. 4375	25/64	9.8 mm	25/64	9.9 mm	25/64	10.0 mm	13/32	10.0 mm	
		13	. 5000	27/64	10.7 mm	7/16	10.8 mm	7/16	10.9 mm	7/16	11.1 mm	
	1/2	20	. 5000	29/64	11.4 mm	29/64	11.5 mm	29/64	11.5 mm	15/32	11.6 mm	
	5/8	11	. 6250	17/32	13.5 mm	35/64	13.6 mm	35/64	13.8 mm	35/64	13.9 mm	
	$5 / 8$	818	. 6250	37/64	14.4 mm	37/64	14.5 mm	37/64	14.6 mm	37/64	14.7 mm	
M	2	0.40	. 0787	1/16	1.6 mm	\#52	1. 6 mm	\#51	1. 6 mm	\#51	1.7 mm	
M	2	0.25	. 0787	\#50	1.7 mm	\#50	1.8 mm	\#50	1.8 mm	\#49	1.8 mm	
M	3	0.50	. 1181	\#40	2.5 mm	\#39	2.5 mm	\#38	2.5 mm	\#38	2.6 mm	
M	3	0.35	. 1181	\#37	2.6 mm	\#36	2.7 mm	\#36	2.7 mm	\#36	2.7 mm	
M	4	0.70	. 1575	\#30	3.3 mm	\#29	3.3 mm	\#29	3.4 mm	\#29	3.4 mm	
M	4	0.50	. 1575	\#28	3.5 mm	\#28	3.5 mm	\#28	3.5 mm	\#28	3.6 mm	
M	5	0.80	. 1969	\#19	4.2 mm	\#19	4.2 mm	\#18	4.3 mm	\#18	4.3 mm	
M	5	0.50	. 1969	\#16	4.5 mm	\#16	4.5 mm	\#15	4.5 mm	\#15	4.6 mm	
M	6	1.00	. 2362	\# 9	5.0 mm	\# 8	5.0 mm	\# 7	5.1 mm	13/64	5.2 mm	
M	6	0.75	. 2362	\# 5	5.2 mm	\# 4	5.3 mm	\# 4	5.3 mm	\# 3	5.4 mm	
M	7	1.00	. 2756	15/64	6.0 mm	1/ 4	6.0 mm	1/ 4	6.1 mm	1/4	6.2 mm	
M	7	0.75	. 2756	1/ 4	6.2 mm	1/4	6.3 mm	1/ 4	6.3 mm	1/ 4	6.4 mm	
M	8	1.25	. 3150	17/64	6.7 mm	17/64	6.8 mm	9/32	6.9 mm	9/32	6.9 mm	
M	8	1.00	. 3150	9/32	7.0 mm	9/32	7.0 mm	9/32	7.1 mm	9/32	7.2 mm	
M	8	0.75	. 3150	19/64	7.2 mm	19/64	7.3 mm	19/64	7.3 mm	19/64	7.4 mm	
M	10	1.50	. 3937	11/32	8.4 mm	11/32	8.5 mm	11/32	8.6 mm	11/32	8.7 mm	
M	10	1.25	. 3937	11/32	8.7 mm	11/32	8.8 mm	23/64	8.9 mm	23/64	8.9 mm	
M	10	1.00	. 3937	23/64	9.0 mm	23/64	9.0 mm	23/64	9.1 mm	23/64	9.2 mm	
M	10	0.75	. 3937	3/ 8	9.2 mm	3/ 8	9.3 mm	3/ 8	9.3 mm	3/8	9.4 mm	
M	12	1.75	. 4724	13/32	10.2 mm	13/32	10.3 mm	27/64	10.4 mm	27/64	10.5 mm	
M	12	1.50	. 4724	27/64	10.4 mm	27/64	10.5 mm	27/64	10.6 mm	27/64	10.7 mm	
M	12	1.25	. 4724	27/64	10.7 mm	7/16	10.8 mm	7/16	10.9 mm	7/16	10.9 mm	
M	12	1.00	. 4724	7/16	11.0 mm	7/16	11.0 mm	7/16	11.1 mm	7/16	11.2 mm	

Here are the sizes of drill required to produce the required size for tapping the required thread. For each line the first part is the size of screw followed by the threads per inch or in metric the pitch. For example 440 is a size 4 screw with 40 threads per inch. While M 20.40 is a metric 2 mm with a 0.40 mm pitch, the distances between one peak to the next. Depending on what kind of material being tapped the size of hole will vary. When taping by hand use $\mathbf{9 0 \%}$ to 50% and when using power tools use $\mathbf{8 0 \%}$ through $\mathbf{5 0 \%}$. The most common used size drill is group 2. For sheet brass, sheet nickel, babbitt, white metal, hard rubber use group 1. For mild steel, aluminum, cast iron, and cast brass use group 2. For bronze, tool steel, drop forging, stainless steel, cast steel, nickel, and copper use group 3. This table lists the next available American drill except for the letter drills use the next larger size. Pick the group best suited for you work pick either drill listed. Metric drills have been add as they will become more available. Note letter drills have been substituted for the next larger fractional drill.The percent values after the drill size are the correct values for that drill.

		diam			80\%			\%			70\%			65	
	00	- 90	. 0470	\# 64	0.0005	76\%	\# 64	-. 0002	76\%	\# 63	0.0001	69\%	\# 62	0.0004	62
	0	80	. 0600	\#55	0.0050	49\%	\#55	0.0042	49\%	\#55	0.0034	49\%	\#55	0.0026	49
	1	72	. 0730	\#53	0.0009	75\%	\#53	0.0000	75\%	1/16	0.0021	58\%	1/16	0.0012	8\%
	2	64	. 0860	\#50	0.0002	79\%	\#49	0.0022	64\%	\#49	0.0012	64\%	\#49	0.0002	64
	3	56	. 0990	\#46	0.0006	78\%	\#45	0.0004	73\%	\#44	0.0032	56\%	\#44	0.0021	56\%
	4	40	. 1120	\#44	-. 0000	80\%	\#43	0.0014	71\%	\#43	-. 0003	71\%	\#42	0.0026	57
	6	632	. 1380	\#36	0.0010	78\%	7/64	0.0018	70\%	7/64	-. 0002	70\%	\#34	-. 0006	67\%
	8	32	. 1640	\#29	0.0045	69\%	\#29	0.0024	69\%	\#29	0.0004	69\%	\#28	0.0029	8\%
	10	24	. 1900	\#26	0.0003	79\%	\#25	0.0001	75\%	\#24	-. 0001	70\%	\#23	-. 0008	67
	10	32	. 1900	\#22	-. 0005	81\%	\#21	-. 0006	76\%	\#20	-. 0006	71\%	\#19	0.0024	59\%
	12	24	. 2160	11/64	-. 0008	81\%	\#16	0.0016	72\%	\#15	0.0019	67\%	\#15	-. 0008	67\%
	12	28	. 2160	\#15	0.0011	78\%	\#14	0.0008	73\%	\#13	0.0015	67\%	\#13	-. 0008	67\%
		20	. 2500	\#	0.0010	79\%		-. 0003	\%		-. 0005	1\%		0.0012	3
		28	. 2500	\# 3	0.0001	80\%	7/32	0.0036	67\%	7/32	0.0013	67\%	7/32	-. 0010	7\%
	116	18	. 3125	17/64	0.0108	65\%	17/64	0.0072	65\%	17/64	0.0036	65\%	17/64	0.0000	65\%
	116	24	. 3125	9/32	0.0121	58\%	9/32	0.0094	58\%	9/32	0.0067	58\%	9/32	0.0040	58\%
3	/ 8	16	. 3750	5/16	0.0025	77\%	5/16	-. 0016	77\%	21/64	0.0099	58\%	21/64	0.0059	58\%
		84	. 3750	11/32	0.0121	58\%	11/32	0.0094	58\%	11/32	0.0067	58\%	11/32	0.0040	8
	116	14	. 4375	3/8	0.0117	67\%	3/ 8	0.0071	67\%	3/ 8	0.0025	67\%	25/64	0.0134	51\%
	116	20	. 4375	25/64	0.0051	72\%	25/64	0.0018	72\%	25/64	-. 0014	72\%	13/32	0.0110	8\%
1	2	13	. 5000	27/64	0.0018	78\%	7/16	0.0124	63\%	7/16	0.0074	63\%	7/16	0.0025	3
	2	20	. 5000	29/64	0.0051	72\%	29/64	0.0018	72\%	29/64	-. 0014	72\%	15/32	0.0110	48\%
		11	. 6250	17/32	0.0008	79\%	35/64	0.0105	66\%	35/64	0.0046	66\%	35/64	. 0013	6\%
5	/ 8	818	. 6250	37/64	0.0108	65\%	37/64	0.0072	65\%	37/64	0.0036	65\%	37/64	0.0000	65\%
M	2	0.40	. 0787	1/16	0.0001	79\%	\#52	0.0001	74\%	\#51	0.0026	57\%	\#51	0.0016	7
M	2	0.25	. 0787	\#50	0.0015	68\%	\#50	0.0008	68\%	\#50	0.0002	68\%	\#49	0.0026	45\%
M	3	0.50	. 1181	\#40	0.0003	79\%	\#39	0.0006	73\%	\#38	0.0013	65\%	\#38	0.0000	65\%
M	3	0.35	. 1181	\#37	0.0002	79\%	\#36	0.0018	65\%	\#36	0.0009	65\%	\#36	0.0000	5\%
M	4	0.70	. 1575	\#30	-. 0003	81\%	\#29	0.0054	60\%	\#29	0.0036	60\%	\#29	0.0018	60\%
M	4	0.50	. 1575	\#28	0.0035	66\%	\#28	0.0022	66\%	\#28	0.0009	66\%	\#28	-. 0004	6
M	5	0.80	. 1969	\#19	0.0019	75\%	\#19	-. 0002	75\%	\#18	0.0013	67\%	\#18	-. 0008	67\%
M	5	0.50	. 1969	\#16	0.0006	78\%	\#16	-. 0007	78\%	\#15	0.0010	66\%	\#15	-. 0002	66\%
M	6	1.00	. 2362	\# 9	0.0007	79\%	\# 8	0.0011	73\%	\# 7	0.0006	69\%	13/64	0.0001	65\%
M	6	0.75	. 2362	\# 5	-. 0000	80\%	\# 4	0.0015	71\%	\# 4	-. 0004	71\%	\# 3	0.0017	61\%
M	7	1.00	. 2756	15/64	-. 0003	81\%	1/ 4	0.0128	50\%	1/ 4	0.0102	50\%	1/	0.0077	50\%
M	7	0.75	. 2756	1/ 4	0.0051	67\%	1/ 4	0.0032	67\%	1/ 4	0.0013	67\%	1/ 4	-. 0007	67\%
M	8	1.25	. 3150	17/64	0.0018	77\%	17/64	-. 0014	77\%	9/32	0.0111	53\%	9/32	0.0079	53

M 81.00 .3150
$9 / 32 \quad 0.0073 \quad 66 \% ~ 9 / 32 \quad 0.0047 \quad 66 \% ~ 9 / 32$
0.0021 66\% 9/32 -. 0004 66\%

M	8	0.75	.3150	$19 / 64$	0.0126
M	10	1.50	.3937	$11 / 32$	0.0115
M	10	1.25	.3937	$11 / 32$	0.0012
M	10	1.00	.3937	$23 / 64$	0.0066
M	10	0.75	.3937	$3 / 8$	0.0120
M	12	1.75	.4724	$13 / 32$	0.0055
M	12	1.50	.4724	$27 / 64$	0.0108
M	12	1.25	.4724	$27 / 64$	0.0006
M	12	1.00	.4724	$7 / 16$	0.0060

47\% 19/64 0.0107
$65 \% 11 / 320.0076$
78\% 11/32 -. 0020
67\% 23/64 0.0041
49\% 3/ 80.0101
$74 \% ~ 13 / 320.0010$
66\% 27/64 0.0070
$79 \% \quad 7 / 16 \quad 0.0130$
68\% 7/16 0.0034

47\% 19/64 0.0088
$65 \% 11 / 320.0038$
78\% 23/64 0.0104
67\% 23/64 0.0015
49\% 3/ 80.0081
74\% 27/64 0.0121 66\% 27/64 0.0032
55\% 7/16 0.0098
68\% 7/16 0.0009

47\% 19/64 0.0069
65\% 11/32 -. 0000
47%
54\% 23/64 0.0073 54\%
67\% 23/64-.0011 67\%
49\% 3/ 80.0062 49\%
56\% 27/64 0.0076 56\%
66\% 27/64-.0007 66\%
55\% 7/16 0.0066 55\%
68\% 7/16-.0017 68\%

Here are the sizes of drill required to produce the required size for tapping the required thread. For each line the first part is the size of screw followed by the threads per inch or in metric the pitch. For example 440 is a size 4 screw with 40 threads per inch. While M 20.40 is a metric 2 mm with a 0.40 mm pitch, the distances between one peak to the next. Depending on what kind of material being tapped the size of hole will vary. When taping by hand use $\mathbf{9 0 \%}$ to 50% and when using power tools use $\mathbf{8 0 \%}$ through $\mathbf{5 0 \%}$. The most common used size drill is group 2. For sheet brass, sheet nickel, babbitt, white metal, hard rubber use group 1. For mild steel, aluminum, cast iron, and cast brass use group 2. For bronze, tool steel, drop forging, stainless steel, cast steel, nickel, and copper use group 3. This table lists the next available American drill except for the letter drills use the next larger size. Pick the group best suited for you work pick either drill listed. Metric drills have been add as they will become more available. Note letter drills have been substituted for the next larger fractional drill.

Size			diam.				group 2		group 3		

							--	/--			
	00	90	. 0470	\# 64	76\%	\# 64	76\%	\# 63	69\%	\# 62	62\%
	0	80	. 0600	\#55	49\%	\#55	49\%	\#55	49\%	\#55	49\%
	1	72	. 0730	\#53	75\%	\#53	75\%	1/16	58\%	1/16	58\%
	2	64	. 0860	\#50	79\%	\#49	64\%	\#49	64\%	\#49	64\%
	3	56	. 0990	\#46	78\%	\#45	73\%	\# 44	56\%	\#44	56\%
	4	40	. 1120	\#44	80\%	\#43	71\%	\#43	71\%	\#42	57\%
	6	32	. 1380	\#36	78\%	7/64	70\%	7/64	70\%	\#34	67\%
	8	32	. 1640	\#29	69\%	\#29	69\%	\#29	69\%	\#28	58\%
	10	24	. 1900	\#26	79\%	\#25	75\%	\#24	70\%	\#23	67\%
	10	32	. 1900	\#22	81\%	\#21	76\%	\#20	71\%	\#19	59\%
	12	24	. 2160	11/64	81\%	\#16	72\%	\#15	67\%	\#15	67\%
	12	28	. 2160	\#15	78\%	\#14	73\%	\#13	67\%	\#13	67\%
	$1 / 4$	20	. 2500	\# 8	79\%	\# 7	75\%	\# 6	71\%	\# 4	63\%
	$1 / 4$	28	. 2500	\# 3	80\%	7/32	67\%	7/32	67\%	7/32	67\%
	/16	18	. 3125	17/64	65\%	17/64	65\%	17/64	65\%	17/64	65\%
	/16	24	. 3125	9/32	58\%	9/32	58\%	9/32	58\%	9/32	58\%
	$3 / 8$	16	. 3750	5/16	77\%	5/16	77\%	21/64	58\%	21/64	58\%
	/ 8	24	. 3750	11/32	58\%	11/32	58\%	11/32	58\%	11/32	58\%
	7/16	14	. 4375	3/ 8	67\%	3/8	67\%	3/ 8	67\%	25/64	51\%
	/16	20	. 4375	25/64	72\%	25/64	72\%	25/64	72\%	13/32	48\%
	/ 2	13	. 5000	27/64	78\%	7/16	63\%	7/16	63\%	7/16	63\%
	/ 2	20	. 5000	29/64	72\%	29/64	72\%	29/64	72\%	15/32	48\%
	/ 8	11	. 6250	17/32	79\%	35/64	66\%	35/64	66\%	35/64	66\%
	/ 8	18	. 6250	37/64	65\%	37/64	65\%	37/64	65\%	37/64	65\%
M	2	0.40	. 0787	1/16	79\%	\#52	74\%	\#51	57\%	\#51	57\%
M	2	0.25	. 0787	\#50	68\%	\#50	68\%	\#50	68\%	\#49	45\%
M	3	0.50	. 1181	\#40	79\%	\#39	73\%	\#38	65\%	\#38	65\%
M	3	0.35	. 1181	\#37	79\%	\#36	65\%	\#36	65\%	\#36	65\%
M	4	0.70	. 1575	\#30	81\%	\#29	60\%	\#29	60\%	\#29	60\%
M	4	0.50	. 1575	\#28	66\%	\#28	66\%	\#28	66\%	\#28	66\%
M	5	0.80	. 1969	\#19	75\%	\#19	75\%	\#18	67\%	\#18	67\%
M	5	0.50	. 1969	\#16	78\%	\#16	78\%	\#15	66\%	\#15	66\%
M	6	1.00	. 2362	\# 9	79\%	\# 8	73\%	\# 7	69\%	13/64	65\%
M	6	0.75	. 2362	\# 5	80\%	\# 4	71\%	\# 4	71\%	\# 3	61\%
M	7	1.00	. 2756	15/64	81\%	1/4	50\%	1/4	50\%	1/4	50\%
M	7	0.75	. 2756	1/ 4	67\%	1/ 4	67\%	1/ 4	67\%	1/ 4	67\%
M	8	1.25	. 3150	17/64	77\%	17/64	77\%	9/32	53\%	9/32	53\%
M	8	1.00	. 3150	9/32	66\%	9/32	66\%	9/32	66\%	9/32	66\%
M	8	0.75	. 3150	19/64	47\%	19/64	47\%	19/64	47\%	19/64	47\%
M	10	1.50	. 3937	11/32	65\%	11/32	65\%	11/32	65\%	11/32	65\%
M	10	1.25	. 3937	11/32	78\%	11/32	78\%	23/64	54\%	23/64	54\%
M	10	1.00	. 3937	23/64	67\%	23/64	67\%	23/64	67\%	23/64	67\%
M	10	0.75	. 3937	3/8	49\%	3/8	49\%	3/8	49\%	3/8	49\%
M	12	1.75	. 4724	13/32	74\%	13/32	74\%	27/64	56\%	27/64	56\%
M	12	1.50	. 4724	27/64	66\%	27/64	66\%	27/64	66\%	27/64	66\%
M	12	1.25	. 4724	27/64	79\%	7/16	55\%	7/16	55\%	7/16	55\%
M	12	1.00	. 4724	7/16	68\%	7/16	68\%	7/16	68\%	7/16	68\%

